United States Patent

US009213486B2

(12) 10) Patent No.: US 9,213,486 B2
Galbraith et al. (45) Date of Patent: Dec. 15, 2015
(54) WRITING NEW DATA OF A FIRST BLOCK 7,827,150 Bl 11/2010 Wuetal.
SIZE TO A SECOND BLOCK SIZE USING A 20057/692421éggg izl * l(s)gg(l)é gaglsta“ia otal 708/422
anetal. ...
WRITE-WRITE MODE 2006/0123268 Al* 6/2006 Forhanetal. ...
2006/0123270 Al* 6/2006 Forhan etal. ...
(75) Inventors: Robert E. Galbraith, Rochester, MN 2006/0123271 Al* 6/2006 nghg Zt 21,
(US); Daniel F. Moertl, Rochester, MN 2008/0109602 Al 5/2008 Ananthamurthy et al.
(Us) 2009/0138672 Al* 5/2009 Katsuragi et al. 711/171
2011/0179238 Al 7/2011 Hosoya et al.
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION, FOREIGN PATENT DOCUMENTS
Armonk, NY (US) P 08030402 A 2/1996
)) o) P 2001282697 A 10/2001
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 226 days.)) o
International Search Report and Written Opinion of the ISA dated
. Jul. 4, 2013—International Application No. PCT/IB2013/050752.
(21) Appl. No.: 13/402,465
U.S. Appl. No. 13/113,546, filed May 23, 2011, Benhase et al.,
(22) Filed: Feb. 22, 2012 Writing of New Data of a First Block Size in a Raid Array that Stores
Both Parity and Data in a Second Block Size.
(65) Prior Publication Data
* cited by examiner
US 2013/0219119 Al Aug. 22,2013
Primary Examiner — Charles Rones
o4
Gh IGn0tt‘$gl}2/00 (2006.01) Assistant Examiner — Tian-Pong Chang
GO6F 12/16 (2006.01) (74) Attorney, Agent, or Firm — Toler Law Group, P.C.
GOG6F 3/06 (2006.01)
GOGF 11/10 (2006.01) 7 ABSTRACT
(52) US.CL Apparatuses and methods to write new data of a first block
CPC GO6F 3/061 (2013.01); GO6F 3/0656 size are provided. A particular method may include writing
(2013.01); GO6F 3/0689 (2013.01); GOGF old data from a destination block of a second block size of a
1171076 (2013.01); GO6F 2211/1057 (2013.01) data drive to a first buffer of the second block size. The old
(58) Field of Classification Search data may be written according to address information of the
CPC oo GOGF 3/0689; GOGF 11/1076 old data and without overwriting the new data in the first
See application file for complete search history. buffer. The method may further include writing zeros to a
second buffer of the second block size according to the
. 2
(56) References Cited address information of the old data. The zeros written in the

U.S. PATENT DOCUMENTS

6,925,526 B2 8/2005 Hall

second buffer may correspond with the old data written in the
first buffer.

7,080,200 B2* 7/2006 Hassneretal. ... 711/114 16 Claims, 6 Drawing Sheets
STORAGECONTROLLER 200 —— 315 DRAM 215
FIRST BUFFER
ORAN 300 HOST 250
CHIP 205
MEMORY CONTROLLER 220 Ew
FIRST 4
BLOCK MEMORY CONTROL "‘;‘;
poi LOGIC 225
[WRING LoGIC 230 |
READING LOGIC 238 | <
1 :
XORING LOGIC 240
]
SECOND
KBLOCK SAS CONTROLLER 270
25 5AS CONTROL LOGIC 275 SYSTEM
NTH 4K : —ar
BLok {1 _w] [EXPANDERS 220
T T
SECOND BUFFER 310 DATADRIVE 235 || P PARITY DRIVE 290 | [QPARITY DRIVE 296
o] | Copwmrvae | || [arwemvar]

U.S. Patent Dec. 15, 2015 Sheet 1 of 6 US 9,213,486 B2

HOST HOST
105 'Y 110

STORAGE SUBSYSTEM
15
STORAGE STORAGE
CONTROLLER CONTROLLER
120 125
RAID RAID
CONTROLLER CONTROLLER
130 135
pisk | [bpisk DISK DISK
DRIVE DRIVE DRIVE || DRIVE
140 145 150 155

FIG. 1

US 9,213,486 B2

Sheet 2 of 6

Dec. 15, 2015

U.S. Patent

882 %2018
NOLLYNILSSG | 21 ¥344ng HI¥NOS |
Zod 162 ALVA O 262 ALNVd d 182 Y1¥Q @10 |_sie¥adna cumy |
662 JANA ALVA D | | 062 IANG ALIMVY D || SBZIANAVIVA 012 43448 ONOO3S
[] |
0ce
_ 082 SYIANVdX3 _ N Y yoots
e —— 3 9 HIN
ll.llllj
pre——— $/Z 01907 104IN0I SVS | cze
ONILYN3dO 0/2 ¥3ITIONLNOD SVS %0079 Y
_ aNo23s
252 21901 Wi
1 0¥Z D190 ONIMOX | A
[4
: SvZ | s€z 21901 oNIavay |
_ _ ¥3TIONLNOD
ﬁ 3od M || ez 91901 ontLim | s
152 62z 21901
sse TOMLNOD AYOWIW #3018
Viva 0K iy LSHI4
M3N ¥0S$300¥d
02Z ¥ TIONINOD ANOWIW
S0Z dIHD
05Z LSOH 00¢ WvQ
§344n8 15414
Sz Wvua s0¢ —~ 002 Y3 TIOYLNOD JOVHOLS

U.S. Patent Dec. 15, 2015 Sheet 3 of 6

RECEIVE NEW
DATA 405

Y

WRITE THE NEW DATA
TO FIRST BUFFER 410

v

READ OLD DATA
FROM DATA DRIVE 415

YE

WRITE THE FIRST BUFFER

US 9,213,486 B2

400 s

WITH OLD DATA 420

NO READ THE FIRST BUFFER XOR
Y WITH THE DATA DRIVE 426

WRITE SECOND BUFFER

Y

WITH ZEROS 425

WRITE XOR PRODUCT
TO SECOND BUFFER 427

READ DONE? 428

YES
A 4

WRITE THE FIRST BUFFER
TO THE DATA DRIVE 430

]

READ P PARITY DRIVE 435

Y

READ THE SECOND BUFFER
XOR WITH P PARITY DRIVE 440

Y

WRITE NEW P PARITY
TO THIRD BUFFER 445

5

WRITE THIRD BUFFER
TO P PARITY DRIVE 450

FIG. 3

U.S. Patent Dec. 15, 2015 Sheet 4 of 6

US 9,213,486 B2

RECEIVE NEW 600 =5,
DATA 605

—

WRITE THE NEW DATA
TO FIRST BUFFER 610

L]

READ OLD DATA
FROM DATA DRIVE 615

S DATA REAU
HANGING? 616

NO

WR:;IIE'I'LHC)EL':%%?%;:ER READ THE FIRST BUFFER XOR
WITH THE DATA DRIVE 626
! !
WRITE SECOND BUFFER

WITH ZEROS 625 WRITE XOR PRODUCT

TO SECOND BUFFER 627
—TSREAD DONE? 25— |
YES

WRITE THE FIRST BUFFER

TO THE DATA DRIVE 630

¥y

READ P PARITY DRIVE 635

T e v
READ THE SECOND BUFFER DO

FFM THEN XOR WITH P PARITY DRIVE 640 READ QPARITY DRIVE 655

l v

READ THE SECOND BUFFER
WRITE NEW P PARITY DO FFM THEN XOR WITH Q PARITY DRIVE 660
TO THIRD BUFFER 645

{ WRITE NEW Q PARITY
WRITE THRD BUFFER TO FOURTH BUFFER 665

TO P PARITY DRIVE 650

L

I

WRITE FOURTH BUFFER
TO Q PARITY DRIVE 670

US 9,213,486 B2

Sheet 5 of 6

Dec. 15, 2015

U.S. Patent

S Old
y _
Lv1va MaN Lv1va 410 ¥OX Lvivad MaN LV1Va MIN
9v1VQa M3N 9v.1vad Q10 ¥OX 9Y.LVva M3IN 9VivVa M3N
SV1Va MIN SV1va 070 ¥OX SVLVA M3IN SV1vVa M3IN
PVLVA MIN Yviva 410 ¥OX ¥V.iva M3IN yviva MaN
€VIVA MIN £V1va 470 ¥OX EVLVA MIN €V.1va M3aN
CVLVA MIN Zv1va 10 40X Zv.iva MaN CVIVA M3IN
Ivivaaio 0 IViva aio «
0vivaaio 0 0vilva aio <«
015 3ARIA ViVa Gl ¥344N8 ANOJ3S §0S ¥344n8 1S¥Id

lvivaaio
9v.lvaaio
Svivaaio
yvivaaio
gvivaaio
cvivaaio
Iviva aio
ovivaaio

015 3ARIA ViVa

LV1Va M3N
9v.1va MaN
SV.1va MaN
yviVd MIN
EVLVA MaN
ZViVa MIN

605 ¥344n8 1SyI4

Coos

US 9,213,486 B2

Sheet 6 of 6

Dec. 15, 2015

U.S. Patent

LEl
S3a0¥3z

veL
1onaodd
Yox

eel
S30y32

Lo

30432

$30¥3z

$30¥3Z

$3043Z

$30¥32

$30¥3Z

13N30¥d ¥OX

13100¥d 80X

13na0yd ¥0X

13na0¥yd ¥OX

10NA0Y¥d ¥OX

12Na0¥d ¥OX

S30432

§3043z

S$30¥3Z

$30432

C oz

9'0ld

gel
vivaaio

SiLviva
M3N

0¢L
vivaaio

6cl
—~

JAINQ v.1va 3HL WOYd QV3Y viva d10

JANA V.LVA IHL KoY GV viva 410

A0 Viva 3HL WO¥d av3y viva 10

JAYA ViVa IHL WOYd avay viva alo

JAIMA v1va 3HL WO¥d av3d Yiva 410

JAI¥0 VLva 3HL WOY4 V3 viva 410

6001 X0=vE7 (3148 X6 vLvQ MIN

8001X0=vE1 (3LAG XxE) VLVA M3IAN

2001X0=vE (3LA8 XX5) YLVA MIN

9001 X0=va1 (ILAS XX6) VLV MIN

S00LX0=va (3LA9 xx5) VIVA M3IN

#001X0=ve (3LAS xx5) v1va MIN

A0 Viva 3HL WOdd Gv3aN VIVa 410

3AINA Viva 3H1 WO¥d GVIY viva alo

JARNA VLVA 3H1 KO¥d QvIY ViVa a0

JANA YLVA 3IHL ROY¥I QvIY viva 470

0cL I\

50.
>~ ¥3ddng
1sy14

US 9,213,486 B2

1
WRITING NEW DATA OF A FIRST BLOCK
SIZE TO A SECOND BLOCK SIZE USING A
WRITE-WRITE MODE

1. FIELD OF THE DISCLOSURE

The disclosure relates to computing technologies, and
more particularly, to writing data to memory.

II. BACKGROUND

A sector is a specifically sized division of a disk drive. A
block is a group of sectors that can be accessed (e.g., read,
written, or both) by an operating system of a host computer.
Common disk drives hold 512 bytes or 528 bytes of datain a
sector. Certain new disk drives hold 4,096 bytes or 4,224
bytes of data in a sector, generally referred to as 4 kilobytes (4
KB). An operating system of a host computer can build a
request with a block size based on the smaller sector size even
when the disk drive has a 4 KB sector size. When this block
size is not a multiple of the disk drive’s sector size, then a
storage controller will need to read the disk drive before
writing that data.

Count-key-data (CKD) is a disk data organization model of
certain operating systems. CKD architecture derives its name
from the record format that typically includes a field contain-
ing the number of bytes of data and a record address, an
optional key field, and the data, itself. CKD records are typi-
cally stored in a block size of 512 bytes or multiples of 512
bytes. Thus, operating systems often seek to access records in
less than the conventional 4 KB block size.

RAID controllers running RAID-5 or RAID-6 read the old
disk drive before writing the new data to the disk drive so it
can generate P parity and Q parity. Thus, when the write
operation block size is not a multiple of the disk drive sector
size, the storage controller does not need to issue extra disk
drive operations, but it may need an efficient data flow.

III. SUMMARY OF THE DISCLOSURE

In a particular embodiment, a method to write new data of
a first block size includes writing old data from a destination
block of a second block size of a data drive to a first buffer of
the second block size. The old data may be written according
to address information of the old data and the first block may
include the new data. The method may further include writing
zeros to a second buffer of the second block size according to
the address information of the old data. The zeros written in
the second buffer may correspond with the old data written in
the first buffer.

In another embodiment, an apparatus is disclosed that
includes a memory and a processor configured to execute a
first process that accesses the memory. The processor may be
further configured to write new data of a first block size by
writing old data from a destination block of a second block
size of a data drive to a first buffer of the second block size.
The old data may be written according to address information
of the old data and the first block may include the new data.
The method may further include writing zeros to a second
buffer of the second block size according to the address infor-
mation of the old data. The zeros written in the second buffer
may correspond with the old data written in the first buffer.

In another embodiment, an apparatus is disclosed that
includes a SAS controller, a memory controller, a memory,
and a processor that is configured to execute a first process
that accesses the memory. The processor may be further con-
figured to write new data of a first block size by manipulating

10

25

30

40

45

50

55

2

the memory controller to receive an indication that a Write-
Write mode for writing the new data is selected. The proces-
sor may be further configured to manipulate the memory
controller to write old data from a destination block of a
second block size of a data drive to a first buffer of the second
block size. The old data may be written according to address
information of the old data and the first block may include the
new data. The processor may be further configured to
manipulate the memory controller to write zeros to a second
buffer of the second block size according to the address infor-
mation of the old data. The zeros written in the second buffer
may correspond with the old data written in the first buffer.

Features that characterize embodiments are set forth in the
claims annexed hereto and forming a further part hereof.
However, for a better understanding of embodiments, and of
the advantages and objectives attained through their use, ref-
erence should be made to the Drawings and to the accompa-
nying descriptive matter.

IV. BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is ablock diagram of an embodiment of a computing
system configured to write new data of a first block size to a
second block size using a write-write mode;

FIG. 2 is a block diagram illustrating in greater detail the
primary hardware entities used to implement an embodiment
of a storage controller consistent with the computing system
of FIG. 1;

FIG. 3 is a flowchart of an embodiment of a method of
writing new data of a first block size in a RAID-5 application;

FIG. 4is a flowchart of another embodiment of a method of
writing new data of a first block size in a RAID-6 application;

FIG. 5 is one example of a first buffer, a second buffer, and
a data drive during execution of a portion of the embodiments
of'the methods of writing new data of a first block size of FIG.
3 and FIG. 4; and

FIG. 6 is another example of a first buffer and a second
buffer during execution of a portion of the embodiments of
the methods of writing new data of a first block size of FIG. 3
and FIG. 4.

V. DETAILED DESCRIPTION

A variety of read operations, write operations, exclusive or
(XOR) operations, finite field multiplication (FFM) opera-
tions, and combinations thereof are typically performed by a
storage controller to write data to disk drives. A RAID, or
Redundant Array of Independent Disks, is a category of disk
drives that combine two or more disk drives for the redundant
storage of data in case of a failure. In certain configurations of
RAID, such as RAID-5 or RAID-6, parity information may
also be stored in the disk drives to facilitate recovery after a
failure.

A sequence of operations has been utilized to write one
block size (e.g., 512 bytes) from the host interface to another
block size (e.g., 4 KB) on the disk drive interface and generate
the parity information for recovery. For example, memory
control logic may issue a read to a first buffer that contains
new data (i.e., Read), XORs the first buffer with old data from
a data drive (i.e., modity), and writes the XOR product to a
second buffer (i.e., write). This sequence of three operations
is referred to herein as atomic read-modify-write operations
that XOR-on-the-fly (or simply XOR-on-the-fly), and the
sequence is utilized with additional operations (e.g., before
and after the atomic read-modify-write operations that XOR-
on-the-fly) that are simply referred to herein as associated

US 9,213,486 B2

3

operations. The term atomic indicates that the first and second
buffers cannot be accessed by others during the read-modify-
write operations.

Provided herein are embodiments of apparatuses and
methods of writing new data of a first block size using an
additional mode referred to herein as a write-write mode. In
particular, the write-write mode includes two write opera-
tions. The first write operation includes writing old data from
a destination block of a second block size of a data drive to a
first buffer with new data of the second block size. The old
data may be written according to address information of the
old data and the first block may include the new data. The
second write operation includes writing zeros to a second
buffer of the second block size according to the address infor-
mation of the old data. The zeros written in the second buffer
may correspond with the old data written in the first buffer.

The atomic read-modify-write operations that XOR-on-
the-fly may still be utilized, as well as the associated opera-
tions, with the write-write mode. However, by using the
write-write mode in addition to the atomic read-modify-write
operations that XOR-on-the-fly and associated operations,
performance may be improved without a significant impact
on the corresponding hardware and firmware environment.

FIG. 1 illustrates a block diagram of a computing system
100 that may include at least one host (e.g., hosts 105, 110).
Each of the hosts 105, 110 may include a plurality of blocks
of a first block size of about 512 bytes or multiples thereof.
The first block size of about 512 bytes may be, but is not
limited to, 512 bytes, 516 bytes, 520 bytes, 524 bytes, 528
bytes, or any combination thereof. The hosts 105, 110 are
coupled to a storage subsystem 115. The storage system 115
may include at least one storage controller, such as storage
controllers 120, 125. Each of the storage controllers 120, 125
may be coupled to at least one RAID controller, such as RAID
controllers 130, 135. The RAID controllers 130, 135 may
each be coupled to at least one disk drive, such as disk drives
140,145,150, 155. The disk drives 140, 145,150, 155 may be
configured in any RAID configuration, such as RAID-5 or
RAID-6, and store parity and data.

Furthermore, each of the disk drives 140, 145, 150, 155
may include a plurality of blocks of a second block size of
about 4 KB or multiples thereof. The second block size of
about 4 KB may be, but is not limited to, 4,096 bytes, 4,224
bytes, or any combination thereof. Thus, the disk drives 140,
145, 150, 155 may be in a RAID configuration with a second
block size of about 4 KB. However, those of ordinary skill in
the art will appreciate that block sizes may increase as tech-
nology progresses, and as such, the scope of the claims and
any embodiments discussed herein is not limited to block
sizes of about 4 KB and about 512 bytes.

Eachofthehosts 105, 110, the storage controllers 120, 125,
and the RAID controllers 130, 135 may be any suitable com-
putational device such as a personal computer, a workstation,
a client, a server, a mainframe, a hand held computer, a palm
top computer, a telephony device, a network appliance, a
blade computer, other computer, or any combination thereof.
Each ofthe disk drives 140, 145,150, 155 may be any suitable
physical hard disk, solid state disk, optical disk, other disk, or
any combination thereof. The storage controller 120 may also
be combined with the RAID controller 130 into a single
storage controller 200 as shown in FIG. 2.

In embodiments shown herein, the hosts 105, 110 may be
configured to use a block size of about 512 bytes or multiples
thereof, and may request to write new data in the block size of
about 512 bytes to atleast one of the disk drives 140, 145, 150,
155. The request may be received by the storage subsystem
115, processed by the storage controllers 120, 125, and the

20

25

40

45

50

4

request may be passed to the RAID controllers 130, 135. The
RAID controllers 130, 135 may use the Write-Write mode as
well the XOR-on-the-fly mode and as other instructions, and
the RAID controllers 130, 135 may write to at least one of the
disk drives 140, 145, 150, 155.

FIG. 2 illustrates the primary hardware entities used to
implement an apparatus that includes a memory and a pro-
cessor configured to execute a process that accesses the
memory. The apparatus may be an embodiment of a storage
controller 200 of FIG. 2, similar to the storage controllers
120, 125 of FIG. 1 combined with the RAID controller 135 of
FIG. 1.

The storage controller 200 may include integrated cir-
cuitry, such as a microchip, or chip 205. The chip 205 may
include a processor, such as an embedded processor 210. The
processor 210 may manipulate the storage controller 200, and
more specifically, a memory controller 220, a SAS controller
270, a PCle controller 245 or any combination thereof to
execute the write-write mode, the atomic read-modify-write
operations that XOR-on-the-fly, associated operations, or any
combination thereof. The processor 210 may be coupled via a
bus to at least one memory, for example, a memory external to
the chip 205, such as DRAM 215. The DRAM 215 may be
utilized as control store.

The storage controller 200 may also include a memory
controller 220 with memory control logic 225, such as writing
logic 230, reading logic 235, xoring logic 240, and FFM logic
242. The memory control logic 225 may be hardware and
include at least one gate, such as an XOR gate for the xoring
logic 240. Furthermore, the memory control logic 225
receives an indication that indicates whether the write-write
mode is selected and should be utilized. If the indication
indicates that the write-write mode is selected, the memory
control logic 225 may perform the two write operations of the
write-write mode. Moreover, the memory control logic 225
may still perform the atomic read-modify-write operations
that XOR-on-the-fly, as well as associated operations, when
the write-write mode is utilized (as discussed further in con-
nection with FIG. 3 and FIG. 4).

The memory controller 220 may be coupled via abusto a
Peripheral Component Interconnect Express or PCle control-
ler 245. The PCle controller 245 may be further coupled to at
least one host 250 by at least one PCIE bus 247. The PCIE bus
247 may be utilized to connect with the host 250 and for direct
memory access (DMA) data flow.

The host 250 may be similar to the hosts 105, 110 of FIG.
1 and will typically be external to the chip 205. The host 250
may include new data 255 that is in at least one block of the
first block size of about 512 bytes or multiples thereof (e.g.,
512 bytes, 516 bytes, 520 bytes, 524 bytes, 528 bytes, or any
combination thereof) and a first size LBA. The new data 255
may include at least one data value in at least one block. The
host 250 may also include an operating system 265 that is
configured to use the first sector size of about 512 bytes for
accesses even when physical disk drives are configured to the
second sector size of about 4 KB (e.g., 4096, 4224, or any
combination thereof). Indeed, the new data 255 may store
CKD records, and each CKD record may be aligned to the 512
byte block boundary. The host 250 may also include direct
memory data access (DMA) control logic (not shown).

The processor 210 may convert the command received
from the host 250 from the first block size and first size LBA
to the second block size and second size LBA. The processor
210 may also derive the pre-data size and post-data size. For
example, when the first sector size is 512 bytes and the second
sector size is 4K, then the first size LBA divided by 8 may be
the second size LBA, or the first size LBA divided by 8 may

US 9,213,486 B2

5

be used to map to the second size LBA. When the first size
LBA modulo 8 is non-zero, then this result (1 to 7)x512 bytes
may be the pre-data size. The second block size may be equal
to the sum of the first block size plus the pre-data size rounded
up to a 4K multiple. The round up value may be the post-data
size. The pre-data size and post-data size may be the amount
of data at the start and end of the second block size of data
drive 285 old data 287 that may not change when the second
block size is written to the data drive 285. The second block
size, second block LBA, pre-data size, and post-data size may
be passed to the SAS controller 270. As such, when the SAS
controller 270 reads the old data 287 as part of a RAID-5 or
RAID-6 write operation, then the SAS controller 270 may
select the Write-Write mode when the pre-data and post-data
is passed to the memory controller 220 and may select XOR-
on-the-fly for the rest of the second block size transfer.

The memory controller 220 may be further coupled via a
bus to a SAS controller 270 with SAS control logic 275. The
SAS controller 270 may be similar to the RAID controllers
130,135 of FIG. 1. The SAS control logic 275 may be utilized
for DM A data flow and may be hardware. The SAS controller
270 may be further coupled to expanders 280 by at least one
SAS bus 277. The expanders 280 may be external to the chip
205 with the expanders 280 further coupled at least one disk
drive. For example, the expanders 280 may be coupled to a
data drive 285 with old data 287, a P parity drive 290 with P
parity 292, and a Q parity drive 295 with Q parity 297. New P
parity and new Q parity may be generated and stored in the P
parity drive 290 and the Q parity drive 295, respectively. Each
of the old data 287, P parity 292, Q parity 297, the new P
parity, and the new Q parity may include at least one data
value in at least one block. In general, the SAS bus 277 may
be utilized to connect with the data drive 285, the P parity
drive 290, and the Q parity drive 295 through the expanders
280.

The drives may be external to the chip 205 and may be
similar to the disk drives 140, 145, 150, 155 of FIG. 1. The
data drive 285, the P parity drive 290, and the Q parity drive
295 may each have a plurality of blocks of the second block
size of about 4 KB, such as, but not limited to, 4096 bytes,
4224 byes, or any combination thereof. Each block ofthe data
drive 285, the P parity drive 290, and the Q parity drive 295
may be accessed using linear block accessing data or LBA.
The P parity drive 290 may be read from and written to in both
the RAID-5 and the RAID-6 configurations. However, the Q
parity drive 295 may be utilized with the RAID-6 configura-
tion.

The new data 255 may be written to the data drive 285. In
particular, the new data 255 may be written to at least one
destination block, such as destination block 288, of the data
drive 285. For simplicity, the term “destination block” may be
utilized herein to reference a block of the data drive 285 where
the new data 255 will be written based on address information
(e.g.,the LBA) ofthe new data 255. For example, the host 250
may request the new data 255 be written to certain LBA’s of
the first block size, and the destination block 288 may be a
block from the data drive 255 where those LBA’s are stored.
The destination block 288, including its old data 287, may be
read from the data drive 285, and after the operations of the
write-write mode and the atomic read-modity-write opera-
tions that XOR-on-the-fly, the new data 255 may be written to
the destination block 288 of the data drive 285. In short, a host
may request an operation of size X, starting at drive LBA'Y.
Firmware may temporarily allocate buffers in DRAM, such
as two bufters, each of size X plus the pre-data and post-data
size for operations discussed herein. Thus, in some embodi-
ments, a table may not be involved.

20

25

35

40

45

55

6

The SAS control logic 275 may perform read operations,
write operations, or any combination thereof involving the
data drive 285, the P parity drive 290, and Q parity drive 295.
The SAS control logic may also pass information from the
drives, as necessary, to the memory control logic 220. Fur-
thermore, the SAS control logic 275 may determine whether
or not the Write-Write mode or the XOR-on-the-fly mode is
selected and should be utilized by the memory control logic
220. For example, the SAS control logic 275 may compare
the block size and starting alignment of the new data 255 and
the block size of at least one of the data drive 285. If the block
size of new data from the host 250 is less than the block size
of the data drive 285, or less than a threshold (e.g., a 4 KB
threshold), then based on the comparison, the SAS control
logic 275 may pass anindication (e.g., a bit, a trigger, a signal,
other indication, or any combination thereof) to the memory
controller 220 to indicate that the Write-Write mode is
selected and should be utilized.

In particular, the SAS control logic 275 may indicate that
the Write-Write mode or XOR-on-the-fly mode is selected as
follows. A SAS controller 270 transfer to the memory control
logic 225 for a read of the old data drive 285 may be one or
more partial transfers of the second block size. The SAS
controller 270 may break the transfers to the memory control
logic 225 when the mode switches between XOR-on-the-fly
and Write-Write mode. The SAS controller 270 may pass to
the memory control logic 225 the following signals when it
issues the write XOR-on-the-fly command or the Write-Write
command.

1-bit to select the Write-Write mode

1-bit to select XOR-on-the-fly

1-bit to also select RAID-6

8-bit RAID-6 constant

Address pointing to the first buffer 305

Address pointing to the second buffer 310

Moreover, the SAS control logic 275 may determine if it
should pass an indication that the Write-Write mode is
selected as follows. For instance, the SAS command block
(CB) that firmware may build has the control information in
it. Moreover, if there is a 4K drive (1-bit in the CB selects this)
and if the operation starts at a sub-block offset, then for the
first N sub-blocks up to that offset, the Write-Write mode may
be used. Also, the CB has an operation length, if that length
completes before the end of the last 4K, then those sub-blocks
may also use the Write-Write mode.

The memory controller 220 may be further coupled via a
bus to at least one memory, such as DRAM 300, that is
external to the chip 205. The DRAM 300 may include at least
one buffer, such as a first buffer 305, a second buffer 310, a
third buffer 315, and a fourth buffer 317. The fourth buffer
317 may be utilized for the finite field multiplication in a
RAID-6 configuration, and may be omitted in a RAID con-
figuration without finite field multiplication, such as the
RAID-5 configuration. The buffers 305, 310, 315, 317 may be
temporary DRAM locations used for operations.

Each of'the first buffer 305, the second buffer 310, the third
buffer 315, and the fourth buffer 317 may be of the second
block size of about 4 KB or multiple thereof (e.g., 4096 4224,
or any combination thereof) because the data drive 285, the P
parity drive 290, and the Q parity drive 295 are of the second
block size of about 4 KB. However, if the data drive 285, the
P parity drive 290, the Q parity drive 295, or any combination
thereof was of a block size other than about 4 KB, then the
block size of the first buffer 305, the second buffer 310, the
third buffer 315, the fourth buffer 317, or any combination
thereof may be of that other block size. Furthermore, the first
block size may be less than or simply different than the

US 9,213,486 B2

7

second block size. The write-write mode writes to the first
buffer 305 and the second buffer 310.

Data may be placed in a particular sector of a block of the
first buffer 305, the second buffer 310, the third buffer 315, the
fourth buffer 317, or any combination thereof based on the
address information (e.g., LBA) of the data (e.g., new data
255, old data 287, or other data) to be written, read, or any
combination thereof. Indeed, LBA addressing may be uti-
lized with all of the drives and buffers discussed herein.

The first buffer 305 may include at least one 4 KB block,
such as first 4 KB block 320, a second 4 KB block 325, and a
nth 4 KB block 330. The memory controller 220 may perform
any read operations, write operations, XOR operations, FFM
operations, or any combination thereof involving the first
buffer 305, the second buffer 310, the third buffer 315, and the
fourth buffer 317.

Turning next to the operation of the storage controller 200,
in connection with the atomic read-modify-write operations
that XOR-on-the-fly, the SAS control logic 275 may pass the
data read from the data drive 285 to the memory control logic
225 along with two addresses, the address for the first buffer
305 and the second bufter 310. The memory control logic 225
issues the DRAM read to the first buffer 305 (i.e., read),
XORs this data with the new data 255 received from the SAS
control logic 275 (i.e., modify), and writes it to the second
buffer 310.

Indeed, in connection with the atomic read-modify-write
operations that XOR-on-the-fly and associated operations,
for RAID-5, the storage controller 200 allocates three buffers
(e.g., the first buffer 305, the second buffer 310, and the third
buffer 315) and performs the following operations, which
include the atomic read-modify-write operations that XOR-
on-the-fly at (b) and associated operations at (a), (¢)-(e):

(a) the new data 255 is received and written to a first buffer
305;

(b) the data drive 285 is read (i.e., read) and that old data
287 is XOR’ed with the first buffer 305 (i.e., modify) and
written in the second buffer 310 (i.e., write);

(c) the new data 255 in the first buffer 305 is written to the
data drive 285;

(d) the P parity 292 is read from the P parity drive 290,
XOR’ed with the second buffer 310, and placed in the third
buffer 310; and

(e) the third buffer 310 with new P parity is written to the P
parity drive 290.

In connection with the atomic read-modify-write opera-
tions that XOR-on-the-fly and associated operations, for
RAID-6, the storage controller 200 allocates an additional
fourth buffer 317 for FFM and performs the following opera-
tions, which include the atomic read-modify-write operations
that XOR-on-the-fly at (b) and associated operations at (a),
(©)-(D):

(a)-(d) operations above, except that FFM with the fourth
buffer 317 is performed before xoring;

(e) the Q parity 297 is read from the Q parity drive 295 and
XOR’ed with the second buffer 310 and placed in a third
buffer 315; and

() the third buffer 315 with the new Q parity is written to
the Q parity drive 295.

However, the memory control logic 225 may additionally
utilize the write-write mode to potentially improve perfor-
mance over the atomic read-modify-write operations that
XOR-on-the-fly and associated operations. Specifically, the
write-write mode may be added as a mode to be utilized, as
necessary, in conjunction with the atomic read-modify-write
operations that XOR-on-the-fly and the associated opera-
tions. For instance, the SAS control logic 275 may be kept

10

15

20

25

30

35

40

45

50

55

60

65

8

substantially the same, and may still issue a write to the
memory control logic 225 and provide two addresses. How-
ever, the SAS control logic 275 may be changed to provide an
indication that the write-write mode is selected. When this
indication indicates that the write-write should be utilized, the
memory control logic 225 may issue the write to the first
buffer 305 and may then issue a write of zeros to the second
buffer 310. The SAS control logic 275 may also be changed to
determine whether or not the write-write should be utilized.

Therefore, in connection with the write-write mode, the
storage controller 200 may receive a request from the oper-
ating system 265 of the host 250 via the PCIE bus 247 to write
the new data 255 of blocks of about 512 bytes. In response to
receiving the request, the SAS control logic 275 of the SAS
controller 270 reads the data drive 285, as necessary, and
passes the old data 287 to the memory controller 220. A
command block (e.g., created by firmware) for the SAS con-
trol logic 275 may include two memory controller 220
addresses (e.g., for the first buffer 305 and the second buffer
310) that are passed to the memory controller 220, as well an
extra field (e.g., fourth buffer 317) for the finite field multi-
plication in a RAID-6 configuration. The SAS control logic
275 also issues a read operation, write operation, or any
combination thereof, as necessary, to the memory controller
200. The SAS control logic 275 may also determine if the
write-write should be selected and passes an indication to the
memory controller 220 indicating that the write-write mode
should be utilized.

The memory control logic 225 of the memory controller
200 responds to the read operation (s) and the write operation
(s) issued by the SAS control logic 275. For example, the
memory control logic 225 may use the write-write mode, and
may write to the two addresses for the first buffer 305 and the
second buffer 310, as necessary. In particular, the writing
logic 230 of the memory control logic 225 may write the old
data to the first buffer 305 (i.e., write) and may write zeroes to
the second buffer 310 (i.e., write).

The memory control logic 225 passes the first buffer 305 to
the SAS control logic 225, and the SAS control logic 225
writes the first buffer 305 to the data drive 285. Additional
read operations, writes operations, xoring operations, FFM
operations, or any combination thereof, such as operations of
the atomic read-modify-write operations that XOR-on-the-
fly and associated operations, may be performed by the SAS
control logic 275, the memory control logic 225, or any
combination thereof as discussed herein. For instance, the
xoring logic 240 may XOR the first buffer 305 with the old
data 287 from the data drive 285 received from the SAS
control logic 275, per the atomic read-modify-write opera-
tions that XOR-on-the-fly.

FIG. 3 shows an embodiment of a method of writing new
data of a first block size. The method 400 may be for a
RAID-5 configuration and may be executed by the storage
controller 200 of FIG. 2 or the storage controllers 120, 125 of
FIG. 1. The method 400 may also use the first buffer 305, the
second buffer 310, and the third buffer 315 of FIG. 2, as well
as the data drive 287 and the P parity drive 290 of FIG. 2. Each
of the buffers and drives may be of a block size that is about
4 KB. For ease of understanding, FIG. 5 includes one example
500 illustrating a first buffer 505 similar to the first buffer 305
of FIG. 2, a data drive 510 similar to the data drive 285 of FI1G.
2, and a second buffer 515 similar to the first buffer 310 of
FIG. 2 during execution of the write-write mode and atomic
read-modify-write operations that XOR-on-the-fly of the
method 400. Afterwards, the remaining associated operations
may be executed using the first buffer 505 and the second
buffer 515 to generate new parity information. Although one

US 9,213,486 B2

9

destination block 288 of FIG. 2 is referenced in the descrip-
tion of FIG. 3 and FIG. 5, those of ordinary skill in the art will
appreciate that there may be a plurality of the destination
blocks 288 from the data drive 285.

The storage controller may receive new data, at 405. For
example, the storage controller 200 of FIG. 2 may receive a
request from the operating system 265 of the host 250 via the
PCIE bus 247 through the PCle controller 245 to write the
new data 255 of blocks of about 512 bytes. The request may
include the address information of the new data 255, such as
at least one LBA where the new data 255 should be written.

In response to receiving the new data 255, the PCle con-
troller 245 issues a write to the memory control logic 225 with
the new data 255 and the LBA’s. The new data may be written
to a first buffer, at 410. For example, the writing logic 230 of
the memory control logic 225 of FIG. 2 may write the new
data 255 to the first buffer 305 according to the address
information of the new data 255, including any offsets. The
first buffer 305 may only have the new data 255 in it at 410, as
illustrated by the first buffer 505 of FIG. 5.

The old data may be read from a data drive, at 415. For
example, the SAS control logic 275 of'the SAS controller 270
of FIG. 2 may read the old data 287 from the data drive 285,
as illustrated by the data drive 510 of FIG. 5. In particular, the
SAS control logic 275 may utilize the LBA’s of the new data
to identity the destination block 288 where the new data 255
will be written, and read the old data 287 of the destination
block 288.

A determination may be made at 416 as to whether the data
read is changing or not. When the read data is changing, then
XOR-on-the-fly mode may be utilized to calculate delta data,
and control may pass to 426 and 427. If not, then the Write-
Write mode may be utilized such that the old data may be
preserved and delta data may be zero, and control may pass to
420 and 425. Turning to 420, assuming the memory control
logic 225 received the indication to utilize the Write-Write
mode, the old data may be written to the first butfer, at 420,
and this prevents that old data from changing. For example,
the writing logic 230 of the memory control logic 225 of FI1G.
2 may write the old data 287 to the first buffer 305 (i.e., first
Write operation), as illustrated in the first buffer 505 of FIG.
5. The old data 287 from the destination block 288 may be
written according to the address information of the old data
287. The first buffer 305 may finish loading at this point.

Additionally, a second buffer may be written by zeroes, at
425. The second buffer is the difference between the old data
and the new data, and as the old data is not changing, the result
is zero. Indeed, the second buffer may be used to track
changes or delta data. For example, the writing logic 230 of
the memory control logic 225 of FIG. 2 may write zeroes to
the second buffer 310 (i.e., the second write operation), as
further illustrated by the second buffer 515 of FIG. 5. The
zeroes may be written according to the address information of
the old data 287. In particular, zeroes may be written in the
second buffer 310 to correspond with the old data 287 in the
first buffer 305. Indeed, the zeros in the second buffer 310 and
the old data 287 written in the first buffer 305 may correspond
by the LBA’s.

The first buffer may be read and XOR’ed with the old data
that was read from the data drive, at 426. In particular, the
atomic read-modify-write operations that XOR-on-the-fly
may be executed for the new data. For example, the reading
logic 235 of the memory control logic 225 of FIG. 2 may read
the first buffer 305. Moreover, the xoring logic 240 may XOR
the first buffer 305 with the old data 287. The second buffer
may be written with the XOR product, at 427 according to the
address information of the new data 255. For example, the

20

40

45

10

writing logic 230 of the memory control logic 225 of FIG. 2
may write the XOR product to the second buffer 310 to
correspond with the new data 255, as further illustrated by the
second buffer 515 of FIG. 5.

Of note, 420, 425, 426, 427, or any combination thereof
may be executed multiple times, in a difterent order, or both.
For example, it is worth noting that not all of the old data 287
may be available at the same time for writing to the first buffer
305. Thus, 420 and 425 may be performed as many times as
necessary to write the old data 287 to the first buffer 305 and
write the zeroes to the second buffer 305. For example, at 428,
a determination may be made as to whether the read is done.
When the read is not done, control may pass to 416 of the
illustrated loop to restart the loop. When the read is done, the
loop may have completed and control may pass to 430.
Indeed, 416 through 428 may loop every 512/528 until the
disk read data has all been processed. Nonetheless, next, the
associated operations may be executed and may generate
parity information.

The first buffer may be written to the data drive, at 430. For
example, the SAS control logic 275 of'the SAS controller 270
of FIG. 2 may write the new data 255 and the old data 285 of
the first buffer 305 to the destinations block 288 of the data
drive 285, as further illustrated by the data drive 510 of FIG.
5.

P Parity may be read from a P parity drive, at 435. For
example, the SAS control logic 275 of'the SAS controller 270
of FIG. 2 may read P parity 292 of the P parity drive 290
according to address information of the P parity. For instance,
the P parity 292 that corresponds with the LBA’s of the data
in the destination block 288 may be read.

The second buffer may be read and XOR’ed with the P
parity read from the P parity drive, at 440. For example, the
reading logic 235 of the memory control logic 225 of FIG. 2
may read the second buffer 310. Moreover, the xoring logic
240 may XOR the second buffer 310 with the P parity 292
from the P parity drive 290 to generate the new P parity.

A third buffer may be written with the XOR product (i.e.,
the new P parity), at 445. For example, the writing logic 230
of'the memory control logic 225 of FIG. 2 may write the XOR
product to the third buffer 315.

The third buffer may be written to the P parity drive, at 450.
For example, the SAS control logic 275 of the SAS controller
270 of FIG. 2 may write the new P parity for the destination
block 288 in the third buffer 315 to the P parity drive 290.

FIG. 4 shows an embodiment of a method of writing new
data of a first block size. The method 600 may be for a
RAID-6 configuration and may be executed by the storage
controller 200 of FIG. 2 or the storage controllers 120, 125 of
FIG. 1. The method 400 may also use the first buffer 305, the
second buffer 310, the third buffer 315, the fourth buffer 317
of FIG. 2, as well as the data drive 287, the P parity drive 290,
and the Q parity drive 295 of FIG. 2. Each of the buffers and
drives may be of a block size that is about 4 KB. For ease of
understanding, FIG. 5 includes one example 500 illustrating
a first buffer 505 similar to the first buffer 305 of FIG. 2, a data
drive 510 similar to the data drive 285 of FIG. 2, and a second
buffer 515 similar to the first buffer 310 of FIG. 2 during
execution of the write-write mode and atomic read-modify-
write operations that XOR-on-the-fly of the method 600.
Afterwards, the remaining associated operations may be
executed using the first buffer 505 and the second buffer 515
to generate new parity information. Although one destination
block 288 of FIG. 2 is referenced in the description of FIG. 4
and FIG. 5, those of ordinary skill in the art will appreciate
that there may be a plurality of the destination blocks 288

US 9,213,486 B2

11

from the data drive 285. The method 600 of FIG. 4 is similar
to the method 400 of FIG. 3 except for the Q parity and FFM
related operations.

The storage controller may receive new data, at 605. For
example, the storage controller 200 of FIG. 2 may receive a
request from the operating system 265 of the host 250 via the
PCIE bus 247 through the PCle controller 245 to write the
new data 255 of blocks of about 512 bytes. The request may
include the address information of the new data 255, such as
at least one LBA where the new data 255 should be written.

In response to receiving the new data 255, the PCle con-
troller 245 issues a write to the memory control logic 225 with
the new data 255 and the LBA’s. The new data may be written
to a first buffer, at 610. For example, the writing logic 230 of
the memory control logic 225 of FIG. 2 may write the new
data 255 to the first buffer 305 according to the address
information of the new data 255, including any offsets. The
first buffer 305 may only have the new data 255 in it at 610, as
illustrated by the first buffer 505 of FIG. 5.

The old data may be read from a data drive, at 615. For
example, the SAS control logic 275 of'the SAS controller 270
of FIG. 2 may read the old data 287 from the data drive 285,
as illustrated by the data drive 510 of FIG. 5. In particular, the
SAS control logic 275 may utilize the LBA’s of the new data
to identity the destination block 288 where the new data 255
will be written, and read the old data 287 of the destination
block 288.

A determination may be made at 616 as to whether the data
read is changing or not. When the read data is changing, then
XOR-on-the-fly mode may be utilized to calculate delta data,
and control may pass to 626 and 627. If not, then the Write-
Write mode may be utilized such that the old data may be
preserved and delta data may be zero, and control may pass to
620 and 625. Turning to 620, assuming the memory control
logic 225 received the indication to utilize the write-write
mode, the old data may be written to the first butfer, at 620,
and this prevents that old data from changing. For example,
the writing logic 230 of the memory control logic 225 of FI1G.
2 may write the old data 287 to the first buffer 305 (i.e., first
write operation), as illustrated in the first buffer 505 of FIG. 5.
The old data 287 from the destination block 288 may be
written according to the address information of the old data
287. The first buffer 305 may finish loading at this point.

Additionally, a second buffer may be written by zeroes, at
625. The second buffer is the difference between the old data
and the new data, and as the old data is not changing, the result
is zero. Indeed, the second buffer may be used to track
changes or delta data. For example, the writing logic 230 of
the memory control logic 225 of FIG. 2 may write zeroes to
the second buffer 310 (i.e., the second write operation), as
further illustrated by the second buffer 515 of FIG. 5. The
zeroes may be written according to the address information of
the old data 287. In particular, zeroes may be written in the
second buffer 310 to correspond with the old data 287 in the
first buffer 305. Indeed, the zeros in the second buffer 310 and
the old data 287 written in the first buffer 305 may correspond
by the LBA’s.

The first buffer may be read and XOR’ed with the old data
that was read from the data drive, at 626. In particular, the
atomic read-modify-write operations that XOR-on-the-fly
may be executed for the new data. For example, the reading
logic 235 of the memory control logic 225 of FIG. 2 may read
the first buffer 305. Moreover, the xoring logic 240 may XOR
the first buffer 305 with the old data 287. The second buffer
may be written with the XOR product, at 627 according to the
address information of the new data 255. For example, the
writing logic 230 of the memory control logic 225 of FIG. 2

10

15

20

25

30

35

40

45

50

55

60

65

12

may write the XOR product to the second buffer 310 to
correspond with the new data 255, as further illustrated by the
second buffer 515 of FIG. 5.

Of note, 620, 625, 626, 627, or any combination thereof
may be executed multiple times, in a difterent order, or both.
For example, it is worth noting that not all of the old data 287
may be available at the same time for writing to the first buffer
305. Thus, 620 and 625 may be performed as many times as
necessary to write the old data 287 to the first buffer 305 and
write the zeroes to the second buffer 305. For example, at 628,
a determination may be made as to whether the read is done.
When the read is not done, control may pass to 616 of the
illustrated loop to restart the loop. When the read is done, the
loop may have completed and control may pass to 630.
Indeed, 616 through 628 may loop every 512/528 until the
disk read data has all been processed. Nonetheless, next, the
associated operations may be executed and may generate
parity information.

The first buffer 305 may be written to the data drive, at 630.
For example, the SAS control logic 275 of the SAS controller
270 of FIG. 2 may write the new data 255 and the old data 285
of'the first buffer 305 to the destinations block 288 of the data
drive 285, as further illustrated by the data drive 510 of FIG.
5.

P Parity may be read from a P parity drive, at 635. For
example, the SAS control logic 275 of'the SAS controller 270
of FIG. 2 may read P parity 292 of the P parity drive 290
according to address information of the P parity. For instance,
the P parity 292 that corresponds with the LBA’s of the data
in the destination block 288 may be read.

The second buffer 310 may be read, finite field multiplica-
tion may be performed to generate finite field multiplication
data, and the finite field multiplication data may be XOR’ed
with the P parity read from the P parity drive, at 640. For
example, the reading logic 235 of the memory control logic
225 of FIG. 2 may read the second buffer 310, and the FFF
logic 242 may perform finite field multiplication to the sec-
ond buffer 310 to generate the finite field multiplication data.
Moreover, the xoring logic 240 may XOR the finite field
multiplication data with the P parity 292 from the P parity
drive 290 to generate the new P parity.

The third buffer 315 may be written with the XOR product
(i.e., the new P parity), at 645. For example, the writing logic
230 of the memory control logic 225 of FIG. 2 may write the
XOR product to the third buffer 315.

The third buffer 315 may be written to the P parity drive, at
650. For example, the SAS control logic 275 of the SAS
controller 270 of FIG. 2 may write the new P parity for the
destination block 288 in the third buffer 315 to the P parity
drive 290.

Q Parity may be read from a Q parity drive, at 655. For
example, the SAS control logic 275 of'the SAS controller 270
of FIG. 2 may read Q parity 297 of the Q parity drive 295
according to address information of the Q parity. For instance,
the Q parity 297 that corresponds with the LBA’s of the data
in the destination block 288 may be read.

The second buffer 310 may be read, finite field multiplica-
tion may be performed to generate additional finite field mul-
tiplication data, and the additional finite field multiplication
data may be XOR’ed with the Q parity read from the Q parity
drive, at 660. For example, the reading logic 235 of the
memory control logic 225 of FIG. 2 may read the second
buffer 310, and the FFF logic 242 may perform finite field
multiplication to the fourth buffer 310 to generate the addi-
tional finite field multiplication data. Moreover, the xoring

US 9,213,486 B2

13

logic 240 may XOR the additional finite field multiplication
data with the Q parity 297 from the Q parity drive 295 to
generate the new Q parity.

The fourth buffer 317 may be written with the XOR prod-
uct (i.e., the new Q parity), at 665. For example, the writing
logic 230 of the memory control logic 225 of FIG. 2 may write
the XOR product to the fourth buffer 317.

The fourth buffer 317 may be written to the Q parity drive,
at 670. For example, the SAS control logic 275 of the SAS
controller 270 of FIG. 2 may write the new Q parity for the
destination block 288 in the fourth buffer 317 to the Q parity
drive 295.

FIG. 6 includes another example 700 illustrating a first
buffer 705, similar to the first buffer 305 of FIG. 2, and a
second buffer 710, similar to the first buffer 310 of FIG. 2,
during execution of the write-write mode and atomic read-
modify-write operations that XOR-on-the-fly of the method
400 of FIG. 3 or the method 600 of FIG. 4. For this example,
it is assumed that new data, such as the new data 255 of FIG.
2,is ofablock size of about 512 bytes and there are six blocks
of'new data (i.e., 3 KB of new data). It is also assumed that the
first buffer 705 and second buffer 710 are of a second block
size of about 4 KB. Moreover, a data drive, such as the data
drive 285, also has a block size of about 4 KB.

Specifically, a host, such as the host 250 of FIG. 2, issues a
write operation of six blocks of new data to LBA’s 0x1004-
0x1009. Memory control logic, such as the memory control
logic 225, receives and writes the six blocks of new data 715
to two 4 KB blocks 720, 725 of the first bufter 705, starting at
a 2 KB offset, at LBA’s 0x1004 through 0x1009 of the first
buffer 705. Thus, the 3 KB of new data 715 is written to the
first buffer 705 of 8 KB. The first buffer 705 may only have 3
KB ofthe new data 715 in it, as the first 2 KB and the last 3 KB
of'the first buffer 705 have not been loaded yet with any data.

An 8 KB read may be issued to two destination blocks of
the data drive, such as the destination block 288 of the data
drive 285 of FIG. 2, to get old data, such as the old data 287.
In particular, for this example, it is assumed that LBA’s
0x1004-0x1009 are stored in LBA’s 0x200-0x201 of the data
drive, thus, two destination blocks of the 4 KB block size are
read from the data drive. When the first 2 K of old data 730
(i.e., the offset) is received from the data drive, the memory
control logic uses the write-write mode indicated by SAS
control logic, such as the SAS control logic 275 of the SAS
controller 270 of FIG. 2. In particular, the memory control
logic places the old data 730 in the first buffer 705 according
to address information of the old data 730, and writes zeros
732 in the second bufter 710 according to address information
of the old data 730. The zeroes 732 correspond with the old
data 730 of the first buffer 705.

When the six 512 bytes of new data 715 are received from
the data drive, the memory control logic uses the atomic
read-modify-write operations that XOR-on-the-fly to read the
first buffer 705 at LBA’s 0x1004-0x1009, XORs the new data
715 in those LBA’s with the old data of the destination blocks
that was in LBA’s 0x1004-0x1009, and places this XOR
product 734 in the corresponding LBA’s of the second buffer
710. When the last 3 KB of old data 735 is received from the
data drive, the memory control logic uses the write-write
mode, places the old data 735 in the first buffer 705 according
to the address information, and writes zeros 737 in the second
buffer 710 according to address information of the old data
735. The zeroes 737 correspond with the old data 735 of the
first buffer 710. The zeroes 732, 737 in the second buffer 710
may indicate that there is no change as no new data has been
written to those corresponding LBA’s.

10

15

20

25

30

35

40

45

50

55

60

65

14

Afterwards, the remaining associated operations discussed
at 430-450 of FIGS. 3 and 630-670 may be executed to
generate new parity information. For example, the first buffer
705 may be written by the SAS control logic to the two 4 KB
blocks of data drive with LBA’s 0x200-0x201.

Indeed, those of ordinary skill in the art may appreciate that
when a host issues a write of a different block size than the
data drive’s block size, the write may still be accomplished
with potentially an increase in performance and insubstantial
changes to the environment. The write may still be accom-
plished because at least some of the old data from the data
drive may be combined with the new data in the first buffer.
The memory control logic may simply utilize the Write-Write
mode, as needed, in conjunction with the atomic read-
modify-write operations that XOR-on-the-fly and the associ-
ated operations. Yet, SAS control logic may not change sub-
stantially. For example, the SAS control logic may still issue
a write to the memory control logic and may still provide two
addresses. However, the SAS control may be changed to
determine and indicate when the Write-Write mode should be
utilized the memory control logic, and changed to pass an
indication.

When this indication indicates that the write-write mode
should be utilized, the memory control logic may still issue
the write to the first buffer and may issue a write of zeros to the
second buffer. However, extra buffers may not have to be
allocated, extra accesses to a data drive (or other drives) may
not need to be added, and extra accesses to the buffers may not
need to be added. Instead, the buffers may appear the same to
firmware, and the basic flow has generally been maintained.
Moreover, the same structure (or substantially similar struc-
ture) and design performance, as when the data did match in
block size, may be maintained.

Particular embodiments described herein may take the
form of an entirely hardware embodiment, an entirely firm-
ware environment, an entirely software embodiment, or an
embodiment containing any combination of hardware, firm-
ware, and software elements. In a particular embodiment, the
disclosed methods are implemented in software that is
embedded in processor recordable and readable storage
medium and executed by a processor, which includes but is
not limited to firmware, resident software, microcode, etc.

Further, embodiments of the present disclosure, such as the
one or more embodiments may take the form of a computer
program product accessible from a computer-usable or com-
puter-readable storage medium providing program code for
use by or in connection with a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or recordable computer-readable, non-tran-
sitory storage medium can be any apparatus that can tangibly
embody a computer program and that can contain, store,
communicate, propagate, or transport the program for use by
or in connection with the instruction execution system, appa-
ratus, or device.

In various embodiments, the medium can include an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system (or apparatus or device) or a propagation
medium. Examples of a recordable computer-readable stor-
age medium include a semiconductor or solid state memory,
magnetic tape, a removable computer diskette, a random
access memory (RAM), a read-only memory (ROM), a rigid
magnetic disk and an optical disk. Current examples of opti-
cal disks include compact disk-read only memory (CD-
ROM), compact disk-read/write (CD-R/W) and digital ver-
satile disk (DVD).

A data processing system suitable for storing and/or
executing program code may include at least one processor

US 9,213,486 B2

15

coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the data processing system either directly or through inter-
vening 1/O controllers. Network adapters may also be
coupled to the data processing system to enable the data
processing system to become coupled to other data process-
ing systems or remote printers or storage devices through
intervening private or public networks. Modems, cable
modems, and Ethernet cards are just a few of the currently
available types of network adapters. The previous description
of the disclosed embodiments is provided to enable any per-
son skilled in the art to make or use the disclosed embodi-
ments.

Various modifications to these embodiments will be
readily apparent to those skilled in the art, and the generic
principles defined herein may be applied to other embodi-
ments without departing from the scope of the disclosure.
Thus, the present disclosure is not intended to be limited to
the embodiments shown herein but is to be accorded the
widest scope possible consistent with the principles and fea-
tures as defined by the following claims.

The invention claimed is:

1. A method comprising:

receiving, by a storage controller that includes a memory
controller and a drive controller, first data of a first block
size from a host executing an operating system config-
ured to access blocks of the first block size;

writing, by the storage controller, the first data to a first
buffer of a second block size;

reading, by the storage controller, second data from a des-
tination block of a data storage device, wherein the des-
tination block is of the second block size;

providing, by the drive controller to the memory controller,
a signal based on whether the first data differs from the
second data, wherein at least one bit of the signal indi-
cates whether the memory controller is to perform a
Write-Write operation or an Exclusive Or (XOR)-on-
the-fly operation; and

performing, by the memory controller, the Write-Write
operation or the XOR-on-the-fly operation based on the
signal provided by the drive controller.

2. The method of claim 1, wherein performing the Write-

Write operation comprises:

writing, by the memory controller, the second data from the
destination block of the data storage device to the first
buffer, wherein the second data is written according to
address information of the second data; and

writing, by the memory controller, zeros to a second buffer
of'the second block size, wherein the zeros are written to
the second buffer at one or more locations corresponding
to locations of the second data in the first buffer.

3. The method of claim 1, wherein performing the XOR-

on-the-fly operation comprises:

reading, by the memory controller, the first data from the
first buffer;

xoring, by the memory controller, the first data from the
first buffer with the second data from the destination
block of the data storage device to generate a XOR
product; and

10

15

20

25

30

35

40

45

50

55

60

65

16

writing, by the memory controller, the XOR product to a
second buffer ofthe second block size, wherein the XOR
product is written to the second buffer at one or more
locations corresponding to locations of the first data in
the first buffer.

4. The method of claim 1, further comprising:

writing, by the storage controller, data from the first buffer
to the destination block of the data storage device,
wherein the data from the first buffer includes both the
first data and the second data;

reading, by the storage controller, P parity from a P parity
drive of the second block size;

reading, by the storage controller, data from a second
buffer;

xoring, by the storage controller, the data from the second
buffer with the P parity from the P parity drive to gen-
erate additional P parity;

writing, by the storage controller, the additional P parity to
a third buffer of the second block size; and

writing, by the storage controller, data from the third buffer
to the P parity drive.

5. The method of claim 4, wherein the data storage device
and the P parity drive are configured as Redundant Array of
Independent Disks-5 (RAID-5).

6. The method of claim 1, further comprising:

writing, by the storage controller, data from the first buffer
to the destination block of the data storage device,
wherein the first buffer includes both the first data and
the second data;

reading, by the storage controller, P parity from a P parity
drive of the second block size;

reading, by the storage controller, data from a second
buffer;

performing finite field multiplication, by the storage con-
troller, for the data from the second buffer to generate
finite field multiplication data;

xoring, by the storage controller, the finite field multipli-
cation data with the P parity from the P parity drive to
generate additional P parity;

writing, by the storage controller, the additional P parity to
a third buffer of the second block size;

writing, by the storage controller, data from the third buffer
to the P parity drive;

reading, by the storage controller, Q parity from a Q parity
drive of the second block size;

reading, by the storage controller, the data from the second
buffer;

performing finite field multiplication, by the storage con-
troller, for the data from the second buffer to generate
additional finite field multiplication data;

xoring, by the storage controller, the finite field multipli-
cation data with the Q parity from the Q parity drive to
generate additional Q parity;

writing, by the storage controller, the additional Q parity to
a fourth buffer of the second block size; and

writing, by the storage controller, data from the fourth
buffer to the Q parity drive.

7. The method of claim 6, wherein the data storage device,
the P parity drive, and the Q parity drive are configured as
Redundant Array of Independent Disks-6 (RAID-6).

8. The method of claim 1, wherein the first block size is
about 512 bytes and the second block size is about 4 kilo-
bytes.

9. The method of claim 1, wherein the first block size is less
than the second block size.

10. An apparatus, comprising:

a memory; and

US 9,213,486 B2

17

one or more processors configured to:
receive first data of a first block size from a host execut-
ing an operating system configured to access blocks
of the first block size;
write the first data to a first buffer of a second block size;
read second data from a destination block of a data
storage device, wherein the destination block is of the
second block size;
provide a signal based on whether the first data differs
from the second data, wherein at least one bit of the
signal indicates whether a Write-Write operation or
an Exclusive Or (XOR)-on-the-fly operation is to be
performed; and
in response to the at least one bit of the signal indicating
that the Write-Write operation is to be performed:
write the second data from the destination block of the
data storage device to the first buffer, wherein the
second data is written according to address infor-
mation of the second data; and
write zeros to a second buffer of the second block size,
wherein the zeros are written to the second buffer at
one or more locations corresponding to locations of
the second data in the first buffer.

11. The apparatus of claim 10, wherein the one or more
processors are further configured, in response to the at least
one bit of the signal indicating that the XOR-on-the-fly opera-
tion is to be performed, to:

read the first data from the first buffer;

XOR the first data from first buffer with the second data
from the destination block of the data storage device to
generate a XOR product; and

write the XOR product to the second buffer of the second
block size, wherein the XOR product is written to the
second bufter at one or more locations corresponding to
locations of the first data in the first buffer.

12. The apparatus of claim 10, wherein the one or more

processors are further configured to:

write data from the first buffer to the destination block of
the data storage device, wherein the first buffer includes
both the first data and the second data written to the first
buffer;

read P parity from a P parity drive of the second block size;

read second buffer data from the second buffer;

XOR the second buffer data with the P parity from the P
parity drive to generate additional P parity;

write the additional P parity to a third buffer of the second
block size; and

write data from the third buffer to the P parity drive.

13. The apparatus of claim 10, wherein the one or more
processors are further configured to:

write data from the first buffer to the destination block of
the data storage device, wherein the first buffer includes
both the first data and the second data written to the first
buffer;

25

30

40

45

50

18

read P parity from a P parity drive of the second block size;

read data from the second buffer;

perform finite field multiplication for the data from the

second buffer to generate finite field multiplication data;

XOR the finite field multiplication data with the P parity

from the P parity drive to generate additional P parity;
write the additional P parity to a third bufter of the second
block size;

write data from the third buffer to the P parity drive;

read Q parity from a Q parity drive of the second block size;

read the data from the second buffer;

perform finite field multiplication for the data from the

second buffer to generate additional finite field multipli-
cation data;

XOR the finite field multiplication data with the Q parity

from the Q parity drive to generate additional Q parity;
write the additional Q parity to a fourth buffer of the second
block size; and

write data from the fourth buffer to the Q parity drive.

14. The apparatus of claim 10, wherein the first block size
is about 512 bytes and the second block size is about 4
kilobytes.

15. The apparatus of claim 10, wherein the first block size
is less than the second block size.

16. A storage controller, comprising:

a drive controller;

a memory controller;

a memory; and

one or more processors configured to:

receive first data of a first block size from a host;
write the first data to a first buffer of a second block size;
read second data from a destination block of a data
storage device, wherein the destination block is of the
second block size;
generate a signal based on whether the first data differs
from the second data, wherein at least one bit of the
signal indicates whether the memory controller is to
perform a Write-Write operation or an Exclusive Or
(XOR)-on-the-fly operation; and
in response to the at least one bit of the signal indicating
to the memory controller to perform the Write-Write
operation:
write the second data from the destination block of the
second block size of the data storage device to the
first buffer of the second block size, wherein the
second data is written according to address infor-
mation of the second data; and
write zeros to a second buffer of the second block size,
wherein the zeros are written to the second buffer at
one or more locations corresponding to locations of
the second data in the first buffer.

#* #* #* #* #*

